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Rigorous Model of Classical Spacetime Foam 
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If in the gravity quantization process one changes from the smooth manifold 
category to a more general category, qualitatively new features can appear. To 
illustrate this, we construct a geometrically precise but physically naive model 
of a classical "spacetime foam" and discuss the consequences of the principle 
of general covariance and the equivalence principle in this more general setting. 
We also show how Einstein's equations can be defined on this "spacetime foam." 

I N T R O D U C T I O N  

At the beginning of our century physicists were confronted with two 
critical situations: the crisis of  the "electrodynamics of  moving bodies" and 
the crisis of  black body radiation. Before giving his ingenious solution to 
the problem of  the electrodynamics of  moving bodies, Einstein formulated 
operational definitions of  those concepts which had been involved in this 
problem, and it was precisely these definitions that showed him the correct 
solution. Unfortunately, since the energies in which the unification of  quantum 
and gravity physics is supposed to occur transcend the actual possibilities 
by many orders of  magnitude, we cannot hope for any truly operational 
definitions in this field. Many authors look for "theoretical observables" and 
their corresponding "theoretically operational definitions" (see the discussion 
in Rovelli, 1991a, b). This line of  research seems to be interesting, but so 
far it has not brought any spectacular results. In these circumstances, the 
doctrine of  a correspondence with classical physics, elaborated by Bohr in 
his struggle to resolve the second crisis, was both a guiding idea and a 
practical tool to formulate quantum laws. Of  course, it is now a common 
practice that the newly proposed theory must, through a kind of limiting 
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process, have a correspondence with former theories, but our suggestion is 
that we should take Bohr's strategy more seriously and thoroughly discuss--in 
the light of the correspondence idea--physical principles upon which the 
present theories are based and which are believed to play a role in the quantum 
gravity regime. It is a kind of dogma among physicists that the future theory 
of quantum gravity should be generally covariant, and only very few doubt 
(for instance, Taylor, 1979; Candelas and Sciama, 1984) that it should deviate 
from Einstein's principle of equivalence. In the present paper we present a 
naive physical model of a classical "spacetime foam" which, however, is 
based on a rigorous mathematical structure, providing a good conceptual 
framework to critically discuss these two principles. Models like the present 
one could be regarded as paving the way for more realistic quantum models. 
The idea of a quantum spacetime foam was proposed by Hawking (1982) 
and subsequently resulted in the path integration approach to the quantization 
of gravity (Hartle and Hawking, 1983). The more radical idea of a "foam of 
topologies" as a phase space for quantum gravity was presented by Isham 
(1989). In contrast to these proposals (and to some others as well), we do 
not regard our classical "spacetime foam" model as even a tentative approach 
to reality, but rather as a mathematically precise context allowing us to discuss 
some interconnections between geometry and its physical interpretation. 

The geometric content of the general covariance principle (GC), when 
looked upon from a general enough geometric perspective, may be expressed 
in the following way. Let % be the set of all solutions of Einstein's field 
equations, and Diff the group of all spacetime diffeomorphisms. GC asserts 
that the physical meaning should be ascribed to % :--- %/Diff rather than to 
%. Let further ~3 be a category of some geometric spaces (possibly more 
general than the category of smooth manifolds). Any morphism "q E ~3 such 
that there exists the inverse morphism -q-1 ~ ~3 is called an isomorphism in 
the category ~3. Let us assume that Einstein's equations have been generalized 
in such a way that some objects of the category ~3 are their solutions. Let 2s 
be the space of all such solutions and Iso the group of all isomorphisms in 
the category ~3. In this context GC would assert that the physical meaning 
should be ascribed to ~ := ~llso rather than to ~.  Of course, if ~3 is the 
category of smooth manifolds, then Iso = Diff. Our classical "spacetime 
foam" model is covariant in this sense. 

In Section 1, the modeling category is introduced in terms of which 
(generalized) charts may be defined on a very general type of spaces called 
sheaf spaces (Berezin 1983). Smooth manifolds are spaces modeled on Rn; 
in this case, all our definitions go "smoothly" to the usual ones. 

In Section 2, we construct our toy model of a classical spacetime. The 
model describes a foam similar to the foam which is formed when soap 
powder is dissolved in water: two-dimensional smooth sectors are joined 
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together along singular one-dimensional edges and zero-dimensional vertices 
to form a three-dimensional configuration. To such a foam we add one 
more (temporal) dimension. It is assumed that test particles follow classical 
trajectories on the background of the above-described spacetime. The model- 
ing category in this case is the space consisting of four intersecting 3-spaces 
naturally spanned by the positive Minkowski coordinate half-axes. We 
develop differential geometry on such spaces and construct the group Iso for 
them (in Section 3) which allows us to study the consequences of GC in this 
particular case. 

The equivalence principle (EP) was thoroughly analyzed by many 
authors (e.g., Weinberg, 1972; Torretti, 1983; Raine and Heller, 1981). EP 
in its weak form (called also the principle of the universality of free fall) 
asserts that "in the absence of non-gravitational influences, test bodies released 
from the same point at the same time with the same initial velocity will 
follow identical trajectories in spacetime independently of their composition 
and internal structure" (Raine, 1981, p. 94). EP in its strong form says that 
"in a freely falling frame the laws of non-gravitational physics assume the 
standard form they have in the absence of gravity" (Raine, 1981, p. 94), i.e., 
that the gravitational field can always locally be transformed away. In Section 
4, we demonstrate that in our toy model of the classical "spacetime foam" 
both versions of EP break down on singular edges and vertices. However, 
the model itself suggests how EP should be generalized. 

In Section 5, we show that Einstein's field equations can consistently 
be defined on the classical "spacetime foam" or, in other words, that the 
Lorentz "spacetime foam" can be a solution of suitably generalized Einstein 
equations. In Section 6, we analyze the fact that a test particle, on approaching 
an edge or a vertex in the "spacetime foam," has no warning that it is 
approaching the singularity. In this sense, the singular part of the spacetime 
curvature which is concentrated in singularities gives rise to a short-range 
(strictly localized) force. 

We think that, besides clarifying certain physical concepts, the present 
work also could be interesting from the purely geometric point of view, 
especially Section 1, in which some standard concepts are essentially 
generalized. 

1. SHEAF SPACES AND MODELING CATEGORIES 

By a sheaf space we understand a pair (X, Cx) where X is a topological 
space and Cx a sheaf of algebras on X. Cx is called a structural sheaf. The 
morphism from a sheaf space (X, Cx) to a sheaf space (y Cv) is the pair 
of mappings 

(f, ~): (x, r --4 (Y, r 
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such thatf." X ---> Y is a continuous mapping, and ~b: f ' O r  --+ Ox is a mapping 
of sheaves of algebras. 

Let K denote R or C. In the following, we shall consider only K- 
algebras (see, for instance, Berezin, 1983). A sheaf space (X, Ox) is said to 
be a K-sheaf space if Ox is a sheaf of K-algebras on X. By 0x: we denote 
the stalk of Ox at x ~ X. A morphism from a sheaf space (X, Ox) to a sheaf 
space (Y, Or) is said to be a morphism of K-sheaf spaces if, for every x 
X, the ring homomorphism 

d~x: Or,:(x) ---) Ox~ 

is a homomorphism of K-algebras. K-sheaf spaces as objects together with 
morphisms of K-sheaf spaces as morphisms form the category of K-sheaf 
spaces. 

In the following, we shall consider only local K-sheaf spaces, i.e., K- 
sheaf spaces (X, Ox) such that in every 0x~ (for every x ~ X) there exists 
the unique maximal ideal. 

Now, we are ready to define the modeling category and spaces of a 
given type which are modeled in terms of this category. 

Definition 1.1. A category .kt of K-sheaf spaces, such that if a K-sheaf 
space M is an object of ~ ,  then any of subspaces of M is also an object of 
~ ,  is a modeling category (called also category of modeling spaces). Its 
objects and morphisms are called modeling objects (or modeling spaces) and 
modeling morphisms, respectively. 

Definition 1.2. Let al~ be a fixed modeling category. The class of K- 
sheaf spaces (X, Ox), together with their morphisms, is a category of K-sheaf 
spaces of the type ~ ,  if the following conditions are satisfied: 

(i) For every x E X there exists an open neighborhood U of x such that 
there is an isomorphism onto its image of K-sheaf spaces 

(f, d~): (U, Oxl U) ---> (L, OL) 

where (L, OL) is a modeling space, fl U ---) L is continuous mapping, and ~b: 
f*OL "--> OxlU. We call (f, d~) an A/Uchart on X. 

(ii) If there is another A/Uchart on X 

(g, t~): (v, 0xl v) ~ (K, OK) 
where (K, 0to) is another modeling space, such that U n V :# 0, then the 
morphism (h, X) determined by the commutative diagram 

( u n  v, c x J u n  v)  

(f', 6') / ~g ' ,  ,') 
(L', 0LIL') (h, X) > (K', OxIK') 
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where L' = f(U n V), K' = g(U n v), is postulated to be a modeling 
morphism. The mappings (f' ,  +') and (g', t~') are restrictions of the At-charts 
(~, d~) and (g, ~) to U n V. The morphism (h, X) (which in fact is an 
isomorphism) is called the transition morphism of the At-charts (f, ~b) and 
(g, t~) on X. 

The set ,~ of all At-charts on X is called the At-atlas on the K-sheaf 
space (X, Ox). 

Definition 1.3. The set ~ /o f  all At-charts on X is a maximal At-atlas on 
the K-sheaf space (X, 0x). The subset ~o of the maximal At-atlas ,~/on (X, 
0x), such that the domains of At-charts belonging to M cover X, is an At- 
atlas on (X, ~3x). 

We also need the concept of representations of mappings of K-sheaf 
spaces in different At-charts. Let 

(F, ~): (X, Ox) ~ (Y, Or) 

be a morphism of K-sheaf spaces of the type At, and let (f, ~b) and (g, t~) 
be N-charts on U C X and V C Y, respectively. We say that the morphism 
(a, or) is a representation of (F, ~)  in the At-charts (f, ~b) and (g, t~) if (a, 
a) is determined by the following commutative diagram: 

(F, 4~)J U 
(u, Oxl u )  > (v, OH v) 

(f, 6) (g, ~) 

(L, 0L) (a, r ~(K, OK) 

If F(U) ~. V, one must restrict the At-chart (f, ~b) to U n F-l(V). If (a, c0, 
for any At-chart, is a morphism in the category At, then (F, ~)  is said to be 
a morphism of the type At. 

Definition 1.4, Any morphism of the type At 

(F, ~): (X, Ox) ---> (Y,, Or) 

such that there exists the inverse morphism to (F, ~)  of the type At, is called 
an isomorphism of the type At. 

The set of all isomorphisms of the type At of (X, 0x) into itself will be 
denoted by Iso(X, Ox) or simply by Iso if there is no danger of misunder- 
standing. It can be easily seen that Iso(X, Ox) with the natural operation of 
the morphism composition and the neutral element (idx, idc x) forms a group. 
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It can be easily seen that any subset A C X of a K-sheaf space (X, Cx) 
itself becomes, in a natural way, a K-sheaf space if one considers the sheaf 
C x I A on A. This allows us to introduce the following definition of modeling 
spaces, which turns out to be more easily applicable in many cases. 

Definition 1.5. The category of all open subsets of the K-sheaf space 
(L, CL) with inclusions as morphisms is called the strictly modeling category. 

The last property means that if U C V C L, and U and V are open in 
L, then the set of morphisms from U to V is a one-element set consisting of 
the inclusion ~ts; if U ~ V, the set of morphisms from U to V is empty. 
Obviously, open subsets with suitable restricted sheaves of algebras are open 
subspaces of the K-sheaf space (L, CL). It can be easily seen that any strictly 
modeling category has the following property: any open subset of any object 
of this category is an object of this category. Evidently, the strictly modeling 
category for n-dimensional smooth manifolds is the category of all open 
subsets of the R-sheaf spaces (R", %,), as discussed in the following example. 

Example 1.1. Smooth manifolds. Let us consider the R-sheaf space 
(R',  %,), where %, is the sheaf of algebras such that %,(U) is the algebra of 
all smooth, real-valued functions on an open subset U of R n. We define the 
category A~o: its objects are subspaces of the R-sheaf spaces (R', %,), n = 
0, 1, 2 . . . . .  and its morphisms are the pairs of mappings 

(f, r (u,  ~ .  I u )  ---> (v, %m f V) 

where U and V are open subsets of R" and R m, respectively, and f: U ---> V 
is of class C ~ in the usual sense. It can be easily seen that the category of 
spaces of the type A~0 is the category of smooth manifolds. The group of 
isomorphisms in this category coincides with the usual group of 
diffeomorphisms. 

Example 1.2. Supermanifolds (see Berezin, 1983). Let m, n > 0 be 
fixed integers, and let A" be the Grassmann algebra over the field K (= R 
or C) with the generators ~l . . . .  , ~m- We define the sheaf 5e,,m on R' ,  U 
~ '~ (U) ,  where U C R" and b~ is the R-algebra of all C~176 
on U with values in A m. It can be shown that ff"m(u) are Z2-graded algebras. 

We define the modeling category fT: its objects are open subspaces of 
the R-sheaf spaces (R',  5r p, q = 0, 1, 2 . . . . .  and its morphisms are 
any mappings (f, ~b) of these R-sheaf spaces which preserve Z2-gradation. 
Any R-sheaf space of the type ~e is called a supermanifold. Isomorphisms 
in the category of supermanifolds are any R-isomorphisms between super- 
manifolds that preserve Z2-gradation. [We should notice that DeWitt (1984) 
and Choquet-Bruhat (1989) give slightly different definitions of supermani- 
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folds. However, these definitions could also be translated into the language 
of modeling spaces.] 

2. CLASSICAL SPACE-TIME FOAM 

The goal of this section is to construct a strict mathematical model of  
a classical spacetime foam which would be a special case of  the conceptual 
scheme discussed in the preceding section. 

First, we define a strictly modeling category At 0. It is given by the 
subspace 

L =  

{( t ,x ,y , z )  ~ R4: ( t = O v x = O v y = O v z = O )  At,  x,y,z>--O} C R  4 

and all its open subsets. If "q is the Minkowski metric on R 4, then "qL -- t*L'q 
is the Lorentz metric on L. One can represent L as the sum L -- Lo U L1 U 
L2 U L3, where L,~, ct = 0, l, 2, 3, are 3-dimensional spaces naturally spanned 
by the positive half-axes of  the Minkowski coordinate system. Of course, 
the Lorentz metric can be pulled back to any of them: "qLa = I'*La'qL" We also 
have, for instance, ~qLlnL2 = - d F  + dz 2, "qL0nLlnL2 = dz 2, etc., and 
"q~nLtnL~nL3 = {0} with the obvious notation. 

Definition 2.1. A (classical) spacetime foam is a paracompact and Hans- 
dorff topological space (M, x) with an Ato-atlas AtlM the At-charts of which 
are local homeomorphisms onto open sets of  the modeling space L such that 
the transition from one At-chart of  the atlas AtlM to another At-chart of  this 
atlas is an isomorphism of the category At0. 

Of  course, isomorphisms of  the category ~ are elements of  the Poincar6 
group acting on L and preserving the categorical structure of L (see Section 
3 below). 

The topological space (M, -r) can easily be changed into a sheaf space. 
We define the structural sheaf in the following way: For any U e "r let 

�9 (U) = [f: U ---> R: V~aaMf  o r -1 e C~(r n O,b))} 

where r has the domain D,~, and the structural sheaf on (M, r) is given by 
~:  U - ~(U) .  Thus we have a sheaf space (M, ~).  [From now on the 
spacetime foam will also be denoted by (M, r, ~).] 

It can be easily seen that for any U e % n e N, f l  . . . . .  f~ e ~ (U) ,  
and to e C~(Rn), the composition to o (fl . . . . .  fn) is an element of ~ (U) .  
Therefore, the sheaf space (M, ~ )  is also a structured space (Heller and Sasin 
1994, 1995), and we can use all differential geometric tools developed for 
structured spaces to study the structure of our spacetime foam. However, to 
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make the present paper self-contained, in the following we shall introduce 
all necessary theoretical concepts as especially adapted to the present situation. 

By singular points (or singularities) we shall understand all those points 
of the spacetime foam (M, "r) at which its manifold structure breaks down. 
Let SingM be the set of all singular points of the spacetime foam and RegM 
the set of all its regular (nonsingular) points. It can be easily seen that SingM 
can be divided into the following types: 

p E SingM is of the type K0.1,2,3 if there is an ~t-chart ~b ~ AtlM, p 
D+, such that ~b(p) E L0 n LI n L2 n L3 = {0}. 

p E SingM is of the type K,,~ a, et, [3, 7 = 0, 1, 2, 3, if there exists ~b 
AtlM, p ~ D+, such that ~b(p) E (L~ n L~ n LQ\(L0 n L1 n L2 O L3). 

p ~ SingM is of the type K~,a, or, [3 = 0, 1, 2, 3, if there exists d~ 
AtlM, p ~ D+, such that d~(p) ~ (L~ n Lf~)\(L~ n L~), where et, [3, ~/, 8 are 
different indices from the set {0, 1, 2, 3 }. 

It is obvious that RegM is open and dense in M, and SingM is closed 
and boundary in M. M can be represented as the disjoint sum 

2 
M = U M i  

i=0  

where M0 is the set of all singular points of the type K0,~,2,3; M1 is the set of 
all singular points of the type K~,I~.v; and M2 is the set of all singular points 
of the type K~,~. Each of the spaces Mi is of constant (differential) dimension 
i (i.e., dim Mi = dim T~,Mi = i, p ~ Mi). 

We remember that XlL is a Minkowski metric on the modeling space L. 
For any p ~ M we choose an al~-chart ~b e AtlM with the domain D+. Of 
course, g+ = ~b*'qL is the Lorentz metric on D+. We conclude that a Lorentz 
metric exists locally on the spacetime foam (M, "r). [A Lorentz metric globally 
on (M, "r) can be understood as an indexed family of Lorentz metrics defined 
locally (on the images of A-charts) satisfying the correct transition rules; 
however, this concept will not be needed in the following.] 

Let ~(M) be the %(M)-module of smooth vector fields tangent to the 
spacetime foam (M, "r, ~) ,  and let us consider the local behavior of tangent 
vector fields near singular points. 

Let ~b E AtIM be an A-chart with the domain D+, p e D+ a singular 
point of the type K~,~, and Y the representation of the tangent vector field X 
E ~(M)  in the ~t-chart qb: D+ --) V. The vector field Y is tangent to the 
subspaces L~ n v and L~ n v, and, of course, it is also tangent to the "edge" 
L~ O L~ N V. Therefore, the tangent vector field Y determines the pair of 
tangent vector fields Y~ = YIL~ O V and Ya = YILa N V, and these two 
vector fields are consistent, i.e., Y~IL~ n V = Yal L~ n v. And conversely, 
a pair of consistent tangent vector fields Y~ and Y~ determines exactly one 
tangent vector field X ID+ such that its representation in the .kt-chart d~ is 
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given by the tangent vector fields Y,~ and Ya. Similar analysis can be carried 
out i f p  ~ D~, is a singular point of  the type K~,a,~,~ or K0,1,2,3. In such cases 
any tangent vector field X E ~ (M)  can locally be represented by three vector 
fields (Y,~, Y~, Yv) or by four vector fields (Yo, Yl, Y2, Y3), respectively. 

Having the Lorentz metric and tangent vector fields, we can locally 
define the metric connection on the spacetime foam (M, x, ~). If g,~ is the 
Lorentz metric given by the A-chart qb: D~, ---) V, there exists exactly one 

connection ~: ~(D~,) • 9g(D,~) --~ 9e(D+) such that 

(i) Zg~,(X, Y)+ = gep(@zX, Y) + gep(X, @zY) 
(ii) @xY = VrX + [X, Y] 
for any X, Y, Z ~ 9e(D, 0. 

We will show this for the case when p E D,~ is a singular point of the 
type K,~,a,v. Let X, Y ~ 9e(D~,) be any tangent vector fields. We choose their 
representations (X1, -'~2, 1(3) and (~'l, ~'2, I7"3) in the ~t-chart qb. The Lorentz 
metric "qL induces the metrics gl, ~2, ~3 on Li N D~,,/-.2 (q D,~, L3 fq D,~. Let 
fTl, V2, V3 be the Levi-Civita connections of the metrics gl, g2, g3, respectively. 
It is easy to see that the vector fields 

Vl~l El, V2,~2 ~'2, V3,(,3 ~r3 

are consistent with each other. Consequently, there exists exactly one vector 

field ~xY ~ 9g(Dep) having the representation 

which ends the proof. 

3. G E N E R A L  COVARIANCE IN THE CLASSICAL SPACE- 
T IME F O A M  

To disclose the meaning of the GC in the case of  the spacetime foam 
(M, "r) we should determine the group Iso of this spacetime. For simplicity 
we shall assume that the entire curvature of the spacetime foam is concentrated 
in SingM, i.e., that the Riemann tensor vanishes on RegM. 

Let R 4 = (R 4, "q) be a Minkowski space carrying the Lorentz metric "q. 
The linear isometries of R 4 form the Lorentz group Ot(4), which is a subgroup 
of the isometry group I(R~) of  R 4 (the Poincar6 or inhomogeneous Lorentz 
group). Let us consider the isometry group I(L 4) of the modeling space L 4 
= (L, L~'q). Since LI 4 is a subspace of R 4 its isometry group I(L 4) is isomorphic 
with the subgroup IL(R 4) of the group I(R 4) consisting of all isometries a 
I(R 4) which preserve L14, i.e., such that a(L~) = L 4. Of course, any such 
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isometry transforms a singular point of a given type into the singular points 
of the same type. The singular point p = (0, 0, 0, 0), as an isolated point, 
is the fixed point of the isometry a. 

For any isometry a: L 4 ~ L 4 there exists an extension ~: R 4 ~ R~ which 
for the point p = (0, 0, 0, 0) is of the form ~ = To ~ h, where h ~ O~(4) 
and To = ida,. We conclude that the isometry group I(L 4) of the modeling 
space L 4 is isomorphic with the subgroup O~(4) of the Lorentz group O1(4), 
preserving L 4, modulo the subgroup K 4 C O1(4) of isometrics which are 
identities on L 4, i.e., if h e K~, then h I L 4 = idL. Therefore, we have 

I(L 4) ~ O~(4)lK 4 

As we can see, the group I(L 4) excludes nontrivial translations. It is a discrete 
subgroup of I(R4). 

Now, we can describe the group Iso(M, "r) of the spacetime foam (M, 
"r). Of course, any isometry t~: M ~ M transforms singular points of a given 
type into the singular points of the same type, and locally determines the 
isometries of neighborhoods of singular points. Any point q ~ RegM has 
locally the isometry group isomorphic with the subgroup I(R 3) or I(R 3) of 
the Poincar6 group I(R4), depending on which sector of the "bubble" q is 
situated. To consider the situation at a singular point p ~ SingM, let ~b E 
AtlM, +: D+ ---) V, be an At-chart such that p ~ D+. Then the isometry group 
locally at p is of the form OV(4)lK 4, where Or(4) is the isometry subgroup 
of 0~(4) preserving V, and K 4 C 01(4) is the subgroup of isometrics which 
are identities on V. 

The group Iso(M, "0 is the symmetry group of the spacetime foam (M, 
'r), and it determines the meaning of GC in this spacetime. This is another 
way of saying that all At-charts belonging to the (generalized) maximal atlas 
AtlM on (M, -r) should be treated on an equal footing. 

4. FREE FALL IN THE CLASSICAL SPACE-TIME FOAM 

To study PE in the classical spacetime foam we need a theory of curves, 
geodesics in particular, in this space. 

Let (M, -r) be a spacetime foam and c" I --) M a curve in it. We say that 
a curve does not change the sector if its representation in an At-chart ~b 
AtlM, c+ = ~ o cll+, where I+ = c- l(Im c f) D+), always remains in the 
subspace LK, K = 0, 1, 2, 3, in the modeling space, and if this is valid for 
all At-charts needed to "cover" c(I). We shall also speak, in the obvious 
sense, about curves changing the sectors. Of course, this can happen only 
when a given curve passes through a singularity. 

By a geodesic with respect to the Lorentz metric g we understand a 
curve c such that, for any At-chart ~b ~ AtlM, the representation c+ of c in 
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the At-chart ~b is a geodesic with respect to the Lorentz metric g+. In other 
words, a curve c is a geodesic in M if it is a geodesic in M~SingM. 

Proposition 4.1. If c: ( -~ ,  ~) ----> M is a smooth curve such that p = 
c(O) ~ SingM, c(t) ~ RegM, for t :/: 0, and c changes the sector at c(0), then 
c'(O) is a tangent vector to SingM. 

[Of course, smoothness is understood here in the sense of the theory of 
structured spaces. A continuous mapping f." M ---> N of a structured space 
(M, ~)  into a structured space (N, ~ )  is said to be smooth if, for any cross 
section g ~ ~ ( U ) ,  U ~ topN, one has g o ( f l f - l ( U ) )  ~ ~( f - l (U) ) ;  see 
Heller and Sasin (1995).] 

Proof Let us suppose that c+ changes the sector L1 into the sector Lz. 
We divide c+ into two parts, cl: ( - e ,  0] ---> L~ and c2: [(0, ~, ) ---> 4 -  We 
have c'l(0) E TpLI, c~(O) ~ Tpl_a, and, from the smoothness, c'(0) = c~(0) 
= C~(0) E T p t  I (7 TpL2 ..~ rp(Z 1 (7 L2). �9 

This result is a close analogue of the one obtained by Vickers (1990), 
who demonstrated that, in the case of quasiregular singularities of generalized 
cosmic strings, the tangent space is degenerate only in normal directions to 
the singularity. It can be easily seen that if a smooth curve changes the 
"edges," for instance, from L0 N La into/-,2 A L3, passing through the singular 
point {0, 0, 0, 0}, then c'(0) = 0 (proof is similar to that of Proposition 4.1). 

Taking into account the above-discussed behavior of curves, we are 
entitled to say that geodesics which do not change the sector and geodesics 
which enter singularities tangentially should be regarded as the histories of 
freely falling test particles. In this case, there is nothing new as compared 
with the standard theory of general relativity. 

In agreement with Proposition 4.1, a curve c can also (smoothly[) change 
the sector by slowing down to zero at the singularity, i.e., c'(p)  = O, p 
SingM. In such a case either the test particle, whose history is the curve c, 
will always remain at p, or an extra force must be applied to initiate the 
further motion. We see, therefore, that such a curve is not a geodesic and 
cannot represent a free fall. A new force, besides gravity, is needed to slow 
down on approaching the singularity and to accelerate to move from it. 

If a test particle freely falling toward a singularity from a nontangential 
direction does not slow down to zero, it will experience a "shock" at the 
singularity, i.e., its history will cease to be smooth. Formally, it is a smooth 
geodesic (i.e., smooth in M~SingM) and from the physical point of view it 
should be qualified as freely falling since no force, besides gravity, is acting. 
However, in this case, the gravitational field cannot be eliminated by a suitable 
choice of a reference frame. The usual version of EP (in both its weak and 
strong formulations) is evidently violated. 
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It is commonly accepted that the geometric counterpart of the fact that 
a gravitational field can locally be transformed away is the existence of the 
flat Minkowski tangent space at the point in question (point p, say) and at 
all sufficiently nearby points of the considered spacetime. Our toy model of 
the spacetime foam shows that it is not enough. Another, so far implicitly 
assumed, condition is that the dimension of all these flat Minkowski tangent 
spacetimes (in a close neighborhood of the point p) should be the same. This 
condition is clearly not satisfied in the case of the classical spacetime foam 
(the dimension of tangent spaces at points of SingM is not constant and 
evidently different than that of tangent spaces at points of RegM). This is a 
geometric counterpart of the fact that the gravitational field can only be 
transformed away in tangent directions to singularities. 

As we have seen in Section 2, one can define a Lorentz metric on a 
spacetime foam (M, "r) since its modeling space L, and consequently the 
spacetime foam (M, -r) itself, can locally be embedded in the Minkowski 
spacetime equipped with the Minkowski metric -q. Heller (1993) proved, 
more generally, that if (M, -r, ~ )  is a sheaf space and if a (pseudo)Riemannian 
metric exists locally at p ~ U C "r, then dimTp M < ~ for any p ~ U, and 
(M, "r, ~ )  can locally be embedded in a flat (pseudo)Euclidean space (in fact, 
this result has been proved for differential spaces, but the generalization to 
sheaf spaces is immediate). To improve our model we can consider a spacetime 
foam (M, a') which can be locally embedded in a (curved) spacetime manifold 
(,~7/, g). Since at each point p of hT/there exists the tangent flat Minkowski 
spacetime, (M, -r) can also be locally embedded in this flat Minkowski 
spacetime. 

To make our toy model more plausible (but still a toy model), let us 
consider many classical spacetime foams {(M, "ri, ~j)}, i , j  = 1, 2 . . . .  , with 
the restriction that all of them can locally be embedded in the same spacetime 
manifold (/~, g). [The "foam of topologies" (M, "ri) was studied by Isham 
(1989); here we propose that also the "differential structure" ~ can be foamy; 
for the time being we neglect the question of how the "foam of topologies" 
and the "foam of differential structures" should be synchronized (they are 
not independent)]. We could regard all these spacetime foams { (M, "ri, ~j)} 
as a fluctuating quantized spacetime on the microscopic level (say, at the 
level of the Planck length and Planck time), and the spacetime manifold (M, 
g) as a suitable macroscopic "averaging" of these fluctuations. To substantiate 
our claim we should elaborate the averaging procedure. However, we postpone 
doing that until a more realistic model is available. 

This picture allows us to generalize the usual formulation of EP: the 
microscopic spacetime must be such that it could be possible to (locally) 
embed it in the spacetime manifold (,(/1, g). If this is true, the distinction 
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between weak and strong formulations of  EP makes sense only on the macro- 
scopic level. 

One can construct many examples of  sheaf spaces which can be embed- 
ded in no finite-dimensional manifold (Sasin, 1988). Such spaces are forbid- 
den by the generalized EP. The reason is that they could not be suitably 
averaged to give a macroscopic spacetime manifold. 

A word of warning must be added. Since our model is only a toy model, 
we do not attach great value to the above-formulated generalized version of  
EP. What seems to us important is that even this naive model clearly demon- 
strates that when changing to the quantum level, EP should be generalized 
rather than kept in its traditional form. 

5. E I N S T E I N ' S  E Q U A T I O N S  ON T H E  C L A S S I C A L  SPACE- 
T I M E  F O A M  

Tensor fields and differential forms of all types can be defined in the 
classical spacetime foam (M, "r), in principle, in the same manner as the 
Lorentz metric tensor was defined in it in Section 2 [tensor fields and differen- 
tial forms on sheaf spaces in general were studied in Heller and Sasin (1995)]. 
An important fact is that if  they are defined on RegM, they have unique 
prolongations to M. As an example, we shall prove this for tensor fields of  
the type (n, 0). Let (01: ~g(M) • " "  • ~g(M) ---> ~ ( M )  and ~02: ~ ( M )  • "-- 
X ~g(M) ---) ~ ( M )  be two such vector fields. We shall show that if  Col lRegM 
= 021RegM, then to1 = to2. Indeed, if  Xl . . . . .  X. ~ ~g(M), one has 

O,) 1 (XI  . . . . .  Xn) J RegM 

= ((Ol I RegM)(Xl I RegM . . . . .  X.  I RegM) 

= (toz I RegM)(X1 I RegM . . . . .  X.  I RegM) = toz(Xl . . . . .  Xn) I RegM) 

From the continuity and the fact that RegM is open and dense in M it follows 
that r 1 . . . .  Xn) = to2(Xl . . . . .  X.). Similar proofs can be repeated for 
any tensor fields and differential forms. 

Let us consider a tensorial equation W(Tl . . . . .  T.) = 0 with the polyno- 
mial dependence between the tensors T~ . . . . .  T. defined on RegM. We have: 

Proposition 5.1. I f  the tensor fields/'1 . . . . .  T. can be uniquely prolonged 
to M = RegM tA SingM, then the equation w(T~ . . . . .  T.) = 0 is valid on M, 

Proof Let T1 . . . . .  T. be prolongations of  7"1 . . . . .  T. to M. Let us 
notice that 

w(7"l . . . . .  l"n) I R e g g  = (wIRegg)(T1 f R e g g  . . . . .  T. I RegM) 

= (w I RegM)(Tl . . . . .  T.) = 0 

Therefore, W(Tl . . . . .  T.) = 0. �9 
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An important corollary of the above proposition is that if (M, "r) is the 
classical spacetime foam and Einstein's equations are defined on RegM, they 
can be defined on M. We have, therefore, a true generalization of Einstein's 
field equations on a spacetime with singularities (see also Heller and Sasin 
1995; Heller, 1992), and we can consider only those spacetime foams which 
are solutions to these generalized Einstein equations. 

Let % be the set of all solutions of Einstein's equations defined on the 
spacetime foam (M, -r), and IsoM the group of all isomorphisms of (M, "r) 
as discussed in Section 3. In agreement with GC, we must ascribe physical 
meaning to %llsoM rather than to % itself. Of course, after "averaging" to 
the macroscopic spacetime (modeled by the usual manifold) one recovers 
the ordinary principle of GC. 

6. GRAVITY AT SHORT RANGE 

Our classical spacetime foam model exhibits an interesting property. 
Singularities inherent in the structure of the spacetime foam can be regarded 
as sources of a gravitational field, but this field corresponds to a short-range 
force, and does this in a very peculiar manner. Let (M, x) be a spacetime 
foam (possibly satisfying the generalized Einstein equations). For the time 
being let us assume that the curvature tensor on RegM vanishes, and the 
entire curvature is concentrated in singularities. Let us imagine that a test 
particle travels in RegM toward a singularity (along a nontangential direction). 
The particle has no warning that it approaches the singularity until it hits it. 
The gravitational field generated by the singularity is a short-range field in 
the sense that no particle (or photon) feels this field before it arrives at the 
singularity. This situation is typical for quasiregular singularities (Ellis and 
Schmidt, 1977), but in the present context of our naive spacetime model it 
acquires a new meaning. One could speculate that at the singularities of the 
spacetime foam gravitons become massive particles. (A similar analysis could 
be carried out with regard to photons. Since, however, our model is far from 
being realistic, we shall not go into details.) 

If the curvature on RegM does not vanish, the particle approaching the 
singularity feels only the usual "long-range" gravity, but it still does not feel 
the "short-range" (massive?) gravity "located" at the singularity until it 
reaches it [the situation is similar to that in a neighborhood of the singularity 
due to the "generalized cosmic string"; see Vickers (1987)]. In the realm of 
macroscopic physics, gravity reveals only its long-range aspect. In agreement 
with the main idea of general relativity, gravity is connected with the spacetime 
curvature. That part of the curvature which is of the singular type (which is 
concentrated at the edges and vertices of the foam) has a short-range character; 
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that part of the curvature which is of the usual tensorial character gives rise 
to the standard long-range gravitational force. 

In connection with the above, it is interesting to notice that it was 
Weinberg (1965) who stipulated that at the quantum level EP (in its usual 
formulation) is equivalent to the fact that gravity is massless and has a 
Coulomb-type potential. If this is true, any modification of EP could modify 
the long-range character of gravity. Weinberg based his arguments on the 
perturbation theory of the Lorentz-invariant S-matrix, whereas our picture is 
rooted in purely geometrical considerations. 
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